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Monte Carlo simulations are used to study the effect of confinement on a crystal of point particles interacting
with an inverse power law potential �r−12 in d=2 dimensions. This system can describe colloidal particles at
the air-water interface, a model system for experimental study of two-dimensional melting. It is shown that the
state of the system �a strip of width D� depends very sensitively on the precise boundary conditions at the two
“walls” providing the confinement. If one uses a corrugated boundary commensurate with the order of the bulk
triangular crystalline structure, both orientational order and positional order is enhanced, and such surface-
induced order persists near the boundaries also at temperatures where the system in the bulk is in its fluid state.
However, using smooth repulsive boundaries as walls providing the confinement, only the orientational order
is enhanced, but positional �quasi-�long range order is destroyed: The mean-square displacement of two
particles n lattice parameters apart in the y direction along the walls then crosses over from the logarithmic
increase �characteristic for d=2� to a linear increase with n �characteristic for d=1�. The strip then exhibits a
vanishing shear modulus. These results are interpreted in terms of a phenomenological harmonic theory. Also
the effect of incommensurability of the strip width D with the triangular lattice structure is discussed, and a
comparison with surface effects on phase transitions in simple Ising and XY models is made.
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I. INTRODUCTION

Nanotechnology is promising to yield a new generation of
materials and devices, a basic approach being the assembly
of nanoparticles into spatially extended regular structures. In
this context, colloidal crystals are a valuable model system,
since the effective interactions between colloidal particles
can be manipulated to a large extent, and convenient tech-
niques to observe the structure and dynamics of such systems
are available �1–4�. Colloidal dispersions under geometric
confinement then can serve to help understand the effects of
confinement on the ordering of various types of nanopar-
ticles.

Related phenomena occur in a wide variety of systems,
e.g., electrons at the surface of liquid helium that is confined
in a quasi-one-dimensional channel �5� example for a con-
fined Wigner crystal �6�; another such system where particles
occur under geometric confinement are “dusty plasmas” �7�
�e.g., negatively charged SiO2 fine particles with 10 �m di-
ameter are suspended in weakly ionized rf Ar discharges
�8��; hard disks �9,10� and magnetorheological �MR� colloids
under confinement �11,12� are of great interest for various
microfluidic and other applications. In the present paper, we
shall not address specific systems or applications, but rather
we are concerned with the generic effect of confinement on
crystalline order in d=2 dimensions, paying attention to the
extent and range over which the confining boundaries disturb
�or enhance, respectively� the degree of order.

The effect of external walls �and/or free surfaces, respec-
tively� on phase behavior has been studied for a long time
�13–22�. To set the scene, we briefly recall the simplest case,
a system undergoing a second-order phase transition in the
bulk from a disordered state to an ordered state with a one-

component order parameter �e.g., an Ising ferromagnet,
Fig. 1�. One must distinguish between boundary conditions
at the wall providing a linear coupling to the order parameter
�“surface magnetic field” H1 in the case of a ferromagnet�
and a quadratic coupling �as it occurs in ferromagnets where
missing neighbors imply that the spins in the surface plane
experience less exchange interactions to neighboring spins
than the spins in the bulk�. In both cases the range over
which the order near the surface is either enhanced or re-
duced is of the order of the correlation length �b of order
parameter fluctuations in the bulk. At the critical temperature
Tc of the second order transition where �b has diverged to
infinity, the exponential decay towards the bulk has been
replaced by a power-law behavior �Fig. 1�b��. Note that in
Fig. 1 we have only considered the case that the field H1 at
the surface acts in the same direction as the order parameter
�b in the bulk �Fig. 1�c��. The case that the field at the
surface acts in the direction opposite to the order parameter
in the bulk is also of great interest, it may lead to the forma-
tion of �ideally macroscopically thick� “wetting layers”
�14–19�, but this phenomenon is not under consideration
here.

Figure 1 is not the whole story, of course, since at a phase
transition it is also of interest to consider the correlation
function G�r�1 ,r�2�= ���r�1���r�2�� of the local order parameter
��r��=���� ,z�, �� being the set of �d−1�-dimensional coordi-
nates parallel to the surface. Since translational invariance is
only broken in the z direction normal to the wall, we can
choose ��1=0, ��2=�� , to redefine the correlation function as
G�r�1 ,r�2��g��� ,z1 ,z2�. While it turns out �13–15� that the de-
cay of g for T�Tc is always given by an exponential decay,
g�exp�−�r�1−r�2� /�b� and for T→Tc the decay length �b does
not depend on the direction of r�1−r�2, the power law at Tc
does depend on the direction,
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g��� ,z1,z2� � �−�d−2+�	�,z1, z2 finite, � → 	 , �1�

g��� ,z1,z2� � �z2 − z1�−�d−2+���, ���, z1 finite, z2 → 	 .

�2�

The exponents �	 ,�� differ also from the exponent encoun-
tered in the bulk, G�r�1 ,r�2�� �r�2−r�1�−�d−2+��.

All the above results apply only for a semi-infinite geom-
etry, and it is also of interest to ask what happens when one
considers instead a thin film of a large but finite thickness D.
Then the correlation length can grow towards infinity only in
the �d−1� directions parallel to the confining walls. As a
result, a crossover from d-dimensional critical behavior to
�d−1�-dimensional critical behavior sets in at a temperature
near Tc when �b has grown to about the distance D between
the walls. At a �shifted� transition temperature Tc�D�, a sec-
ond order transition with �d−1�-dimensional critical behav-
ior occurs, if d�2. In the case d=2, however, Tc�D�=0,
since d−1=1 then coincides with the lower critical dimen-
sion. The correlation length ��T� grows as ��T�� �T
−Tc�	��−
 �with 
=1 �23�� until ��T� becomes of the order of
D, and then a crossover sets in to a behavior �24� ��T�

�D exp��� /kBT�D�, � being the interfacial tension between
coexisting phases in d=2. Note that for the XY model, how-
ever, d=2 is the lower critical dimension �25–29�, and then
��T� grows as ��T��exp
const�T−Tc�	��−1/2� until ��T� be-
comes of the order of D, and then a crossover sets in to �30�

��T� = 2��T�D/kBT = D/�
��T�� , �3�

��T� being the helicity modulus of the d=2 bulk XY model,
and ��T� describes the decay of the spin-spin correlation
function of the XY model in d=2 at all temperatures in the
low-temperature phase �recall that �b�0 in this model�.

As a result, subtle crossovers occur in the correlation
functions in thin films near the critical point Tc of the bulk
system �and below it�. In an Ising system, Eq. �1� is expected
to hold near Tc only for ����T��D, while for ����T� an
exponential decay proportional to exp�−� /��T�� occurs. For
T�Tc, we have g��b

2 for ����T�, while for ����T� the
same exponential decay occurs �but now ��T� can be ex-
tremely large, due to the exponential dependence of ��T� on
D, as noted above�. In the XY model, however, we expect a
power law decay of g with � for ��D for all temperatures

FIG. 1. Schematic variation of the local order parameter ��z� as a function of the distance z from a wall �or free surface, respectively�
that is located at z=0. The second order phase transition from the disordered phase �with order parameter �b=0 in the bulk� to the ordered
phase �where �b�0� occurs at Tc in the bulk. In cases �a�–�c� it is assumed that at the wall at z=0 a local surface field H�z�=H1��z�
conjugate to the order parameter ��z� acts. As a result, there exists not only a local order parameter �1 right at the surface, but surface-
induced order occurs in a region of a width of order �b, the order-parameter correlation length in the bulk, both for T�Tc and for T�Tc. This
surface induced order decays to zero for T�Tc and to �b for T�Tc. Right at T=Tc the order decays also to zero, but much more slowly
namely according to a power law, with an exponent that has been denoted as � /2 here. In case �d� it is assumed that the surface is “neutral,”
no sign of the order parameter is preferred, and so the surface couples only to the order parameter square: the most frequent case then is that
the ordering tendency at the surface is reduced �e.g., by the “missing neighbor effect”�. Then �1��b for T�Tc, and ��z� relaxes towards
�b from below. The range over which �b and ��z� appreciably differ is again of the order of �b.
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below Tc, and for ��D an exponential decay exp�−� /��T��
with ��T� being given by Eq. �3� takes over.

We have emphasized here the behavior of the d=2 XY
model, since there are very close analogies between the or-
dering of that model and the behavior of positional order in
d=2 crystals. In the next section, we shall briefly review the
theoretical predictions on �harmonic� crystals in d=1 and d
=2 dimensions and recall the theoretical predictions on two-
dimensional melting that are most relevant in the present
context. We then discuss how the above scenario on surface
and size effects in the strip geometry can be carried over to
this problem qualitatively.

II. CRYSTALLINE ORDER IN LOW DIMENSION:
THEORETICAL BACKGROUND

As is well known, in systems with short range potentials
crystalline order in d=1 dimension is possible at T=0 only,
and hence the system at any nonzero temperature is molten
into a fluid structure �31,32�.

A simple model of this situation is provided by the Hamil-
tonian of a harmonic chain �31�

H =
1

2

�

�
�
2/m + mc2�y�+1 − y� − a�2/a2� , �4�

where point particles of mass m have positions y� and con-
jugate momenta 
�. In the classical ground state one has
yn=y0+na, n=1,2 , . . . ,N→	, a being the lattice spacing of
the one-dimensional periodic lattice appearing in the ground
state. The parameter c plays the role of a sound velocity
when one determines the eigenfrequencies of H ��=cq for
wave numbers q→0�. From Eq. �4� it is straightforward to
calculate the correlation function of the mean square dis-
placements un=yn−na as

��un − u0�2� = na2kBT/�mc2� = n�2. �5�

Here � characterizes the local displacement. The obvious in-
terpretation of Eq. �5� is that the relative displacements u�

−u�−1 at each index � of the one-dimensional �1D� lattice
add up in a random-walk-like fashion. The static structure
factor

S�q� =
1

N


�,��

�exp�iq�y� − y����� �6�

for this harmonic crystal can be expressed in terms of the
mean-square displacements as

S�q� =
1

N


�,��

exp�iq�� − ���a�exp�−
1

2
q2��u� − u���

2�� .

�7�

Using then Eq. �5� in Eq. �7� it is straightforward to show
that �31�

S�q� = sinh�q2�2/2�/�cosh�q2�2/2� − cos�qa�� . �8�

Since cos�qa�=1 for the Bragg peak positions q
a=2

, 

=0, ±1, ±2, . . . , one recognizes that for small � the structure

factor has a series of rather sharp peaks at the Bragg posi-
tions, which smoothly develop towards a series of delta func-
tions ��q−q
� as �→0 �which means T→0, cf. Eq. �5��. For
T small but nonzero, on the other hand, the structure factor
resembles a series of Lorentzian peaks,

S�q � q
� � q

2�2/�q


4�4/4 + �q − q
�2a2�

= �4/q

2�2��1 + �q − q
�2
−4�2�−1


 = 1,2,3, . . . , � = amc2/�2
2kBT� . �9�

The length � describing the inverse width of the first
pseudo-Bragg peak can be interpreted as the correlation
length of positional order in the 1D chain. From Eq. �5� we
recognize that this corresponds to a distance na along the
chain for which the mean-square displacement has grown to
a value 1/ �2
2�, which hence is an analog to the “Linde-
mann criterion” of melting familiar from crystals in d=3
�33�. Note that Piacente et al. �6� suggested to generalize the
“Lindemann criterion” to estimate the melting temperature of
a crystal to low-dimensional systems by requiring that the
“Lindemann parameter” Lp= ��u1−u0�2� /a2=0.1. Such a no-
tion would imply that even a crystal in d=1 has a nonzero
melting temperature Tm�0, as Eq. �5� shows. Equation �9�
shows this makes little sense, however �� /a�1/2 at this
temperature Tm�. As is well known, Eqs. �8� and �9�, do
provide a realistic description of materials such as the mer-
cury chain compound Hg3−�AsF6 �31,32�.

We now turn to the two-dimensional case. Being inter-
ested in point particles that interact with pairwise potentials
V�r� depending only on the absolute value r of their distance,
the relevant crystal structure is the triangular lattice. In d
=2, however, we now must consider both positional order
and bond orientational order �19,27,34–39�.

The average positional long range order can be studied
most conveniently by studying the order parameter compo-
nents, see Fig. 2,

FIG. 2. Geometry of the triangular lattice: the y axis is oriented
along a nearest neighbor direction, the x axis perpendicular to it.
The lattice spacing is denoted as a0, and hence neighboring rows of
particles along the y axis are at distance a0

�3/2. The angle between
a bond connecting particles k and j and a reference direction �the y
direction in the figure� is denoted as � jk. The basic vectors of the

reciprocal lattice are denoted as G� 0 and G� 1. The displacement u����
of the �th particle from its ideal lattice position is decomposed in its
Cartesian coordinates ux��� and uy���.
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�G� 0
=

1

N
�


�=1

N

exp�iG� 0 · r����� ,

�G� 1
=

1

N
�


�=1

N

exp�iG� 1 · r���� , �10�

where r�� is the position of the lth particle and G� 0 ,G� 1 are the
two basic vectors of the reciprocal lattice. From the simula-
tion, the full distribution function P��G� 0

,�G� 1
� is accessible.

Note that the static structure factor

S�q�� =
1

N


�,��

�exp�iq� · �r�� − r������ �11�

has peaks at the reciprocal lattice spots, and the maximum
values of S�q�� at these peak positions are simply related to
the second moment of the order parameter distribution, e.g.,

S�G� 0� = N��
G� 0

2 �, S�G� 1� = N��
G� 1

2 � . �12�

The local orientational order parameter �k is defined as
�33–39� �see Fig. 2�

�6�k� =
1

6 

j�n.n.of k�

exp�6i� jk� , �13�

where the 6 in the argument of the exponential function ex-
presses the fact that in the ideal triangular structure the
angles � jk’s of a considered particle can differ only by mul-

tiples of 2
 /6. The average orientational order parameter �̄6
and its correlation function g6�r�� then become

�̄6 =
1

N��
�=1

N

�6�����, g6�r�� = ���6�k��6�k���� ,

�14�

where r�=r�k−r�k�. Note that g6�r�→	�=�̄6
2 if orientational

long range order exists.
Again it is of interest to consider the predictions of the

harmonic approximation. We start from the continuum ap-
proximation for a two-dimensional elastic solid that has a
triangular lattice structure �33�

He� =
1

2
� dQx

2

� dQy

2

��� + 2� − p�Q2uL

2 + �� − p�Q2uT
2� .

�15�

Here the integration is extended over the first Brillouin zone,
� and � are the well-known Lame coefficients, and p is the

hydrostatic pressure. The Fourier transform u��Q� � of the dis-
placement vector u���� �cf. Fig. 2� has been decomposed into
longitudinal �L� and transverse �T� components,

u���� = �1/�N�

Q̄

u��Q� �exp�iQ� · r���, uL�Q� � = Q�̂ · u��Q� � ,

u�T�Q� � = u��Q� � − Q�̂ uL�Q� �, Q�̂ � Q� /�Q� � . �16�

A quantity of basic interest that we wish to calculate from the
elastic Hamiltonian, Eq. �15�, is the displacement correlation
function

G�r�� � ��u��r�� − u��0��2� = �2/N�

Q�

��u��Q� ��2��1 − cos�Q� · r��� .

�17�

Note that G�r�� also controls the static structure factor S�q��
�Eq. �11�� since �r��=R� �+u�� ,R� �=reference reference position
in the perfect triangular lattice�

S�q�� =
1

N


�,��

exp�iq� · �R� � − R� ����exp�−
1

2
��q� · �u�� − u�����

2�� .

�18�

Using the equipartition theorem one readily shows from Eq.
�15� that �33�

�u��Q� �u��− Q� �� =
kBT/Q2

�� + 2� − p�
Q̂�Q̂�

+
kBT/Q2

� − p
���� − Q̂�Q̂�� , �19�

where �, � denote Cartesian components. Here we shall fo-
cus in particular on the displacement correlation of y com-
ponents and consider also a distance r� along the y direction,
to find

��uy�na0� − uy�0��2� =
2

N


Qx



Qy

�uy�Q� �uy�− Q� ��

��1 − cos�Qyna0�� , �20�

where the values Qx, Qy over which the sums are extended
are determined by the geometry of the considered crystal,
and the boundary conditions chosen. We here consider a lat-
tice of size D in the x direction and size L in the y direction,
and choose periodic boundary conditions. It is convenient to
measure the lengths in the y direction in units of the lattice
spacing a0�1 �Fig. 2� and in the y direction in units of d
=a0

�3/2, the distance between rows. Then

Qx/
 = − 1,− 1 +
2

D
,− 1 +

4

D
, . . . ,1 −

2

D
, �21�

Qy/
 = − 1,− 1 +
2

L
,− 1 +

4

L
, . . . ,1 −

2

L
, �22�

i.e., the Brillouin zone is appropriately discretized �there are
L /a0 discrete values Qy, etc.�, but the center of the Brillouin
zone �the point Qx=Qy =0� has to be omitted from the sum-
mation, since it would yield in Eq. �20� a uniform displace-
ment of the whole lattice.

For a quantitative comparison of Eq. �20� to simulation
results, it is preferable to evaluate Eqs. �19�–�22� numeri-
cally. This will be done in Sec. III. Here we rather discuss an
approximate evaluation of Eq. �20� which elucidates the be-
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havior of the displacement correlation qualitatively.
Considering the limit where both 1�n�D and 1�n

�L we can approximate the summations by integrals, to ob-
tain �N=LD�

��uy�n� − uy�0��2� � 2�
−



 dQx

�2
��−



 dQy

2


1 − cos�Qyn�
Qx

2 + Qy
2

�� Qy
2

Qx
2 + Qy

2

kBT

� + 2� − p

+
Qx

2

Qx
2 + Qy

2

kBT

� − p
� . �23�

One can show that for the considered limit the integral has a
logarithmic variation in n, similar to the simpler integral
�40�, where g is a constant,

I =
2kBT

g
�

−



 dQx

2

�

−


+
 dQy

2


1 − cos�Qyn�
Qx

2 + Qy
2

=
kBT

g
�

0


 dQx

2
Qx
�1 − exp�− Qxn�� �

kBT

2
g
ln n . �24�

This logarithmic divergence of the correlation function of the
displacements is responsible for the fact that in two-
dimensional crystals the delta function singularities of S�q�
at the Bragg spots are replaced by power-law singularities, as
is well known �36,41�.

On the other hand, a different result is obtained if we
consider a very elongated system, D�n�L. Then it is still
appropriate to transform �1/L�
Qy

�¯� into �dQy /2
�¯� but
keep the sum over Qx discrete. This yields an expression of
the type

��uy�n� − uy�0��2� �
2kBT

g

1

D

Qx

�
−


+
 dQy

2


1 − cos�Qyn�
Qx

2 + Qy
2 .

�25�

It is easy to see that the dominating term in Eq. �25� comes
from a single term in the sum, namely the term with Qx=0,

��uy�n� − uy�0��2� �
2kBT

g

1

D
�

−


+
 dQy

2

�1 − cos�Qyn��/Qy

2.

�26�

Transforming the integration from Qy to z=Qyn and using
�40� �−	

+	dz�1−cos z� /z2=
, a linear increase of the displace-
ment correlation results,

��uy�n� − uy�0��2� �
2kBT

g



n

D
, D � n � L . �27�

Comparison of Eqs. �5� and �27� shows that in this limit a
crossover to quasi-one-dimensional behavior has occurred,
as expected. Equating Eqs. �24� and �27� the location of this
crossover can be estimated as

ncross � D ln D . �28�

Defining again the positional correlation length � from the
condition that the mean-square displacement correlation

reaches a finite fraction of the square of the lattice spacing,
we find a result analogous to Eq. �9�,

� � D�g/2
kBT�; �29�

thus � diverges in both the limits D→	 and T→0. Equation
�29� is fully analogous to the corresponding result of the
two-dimensional XY model, Eq. �3�.

In the bulk case �D→	� there still is no positional
long range order, of course, since the logarithmic variation
�Eq. �24�� of the mean-square displacement correlation has
taken over. As is well known, this fact also implies that the

peak heights of the structure factors S�G� 0�, S�G� 1� are not
proportional to N �cf. Eq. �12��, but scale with a sublinear
power of N,

S�G� 0� � N1−const kBT/g. �30�

The constant in the exponent in Eq. �30� can be worked out
from the harmonic theory �27,36,41� but we shall not dwell
further on this issue here. But we stress the consequence that
both ��

G� 0

2 � and ��
G� 1

2 � are vanishing in the thermodynamic

limit, while �̄6 is nonzero at low temperatures �34�.
When we consider a system with walls, the behavior near

the wall will again depend very much on the nature of the
boundary condition provided by the wall. Two types of walls
shall be considered in this paper �Fig. 3�, namely, �i� struc-
tureless flat planar walls and �ii� “structured walls” defined
by two rows of particles fixed at the ideal lattice positions
�with the proper lattice spacing having the same value as in
the bulk�. These fixed particles interact with the mobile par-
ticles with exactly the same interparticle potential as all the
mobile particles do. With respect to positional order in the x
direction normal to the walls, both types of boundary condi-
tions at the walls act like an ordering field does in the case of
magnetic systems �Fig. 1�. Consequently, we expect that the
density distribution ��x� will be nonuniform near x=xwall

=0 also in the fluid phase, and show a periodic modulation
with a period close to d=a0

�3/2 which decays over a dis-
tance of order ��T�, the positional correlation length. Also
with respect to the orientational order �6, both types of walls
clearly act like ordering fields, and so one expects that

�̄6�x��exp�−x /�6�T�� also in the fluid phase of a semi-
infinite system. In a thin film confined between two parallel
walls a finite distance apart, due to the combined effect

of both walls some nonzero average order parameter �̄6�T�
in the thin film hence will be present at all temperatures,
also in the fluid phase. In the solid phase, of course, the

situation will rather resemble Fig. 1�c�, i.e., �6�x�−�̄6�T�
�exp�−x /�6�T��, for x near the wall with xwall=0.

However, the situation is quite different with respect to
the positional order in the y direction parallel to the wall. The
boundary condition provided by the structured wall also can
be considered as a kind of field conjugate to the positional
order, due to the commensurate corrugation of this potential
in the y direction. So for x near xwall also nonzero order
parameters �G� 0

�x�, �G� 1
�x� will be induced due to the re-

sponse of the system to these local ordering fields, and this
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crystalline local order will decay towards zero proportional
to exp�−x /��T��, in a semi-infinite system in its fluid phase.
In its crystalline phase, however, true crystalline long range

order with nonzero order parameters �̄G� 0
, �̄G� 1

does not ex-
ist, as noted above, and we rather expect a power law decay
of the surface-induced crystalline order, similar to the case of
Fig. 1�b�. The situation is rather analogous to the two-
dimensional XY model for temperatures below the
Kosterlitz-Thouless transition �25–29,42,43� in a local sur-
face magnetic field H1 �20–22�. In fact, at low temperatures
the Hamiltonian of the XY model can be reduced to a har-
monic form �J is the exchange constant� and �for H1=0�

HXY = − J

��,j�

cos��� − � j� �
1

2
J


��,j�
��� − � j�2, �31�

where an unimportant constant was omitted. The spin-spin
correlation function in this spin-wave regime can then be
written �cf. the analogy with the displacement correlation
function�

�S�0 · S� i� = �cos��0 − �r��� = exp�−
1

2
���0 − �r��2�� .

�32�

Thus one finds in the bulk that �25–29�

���0 − �r��2� �
kBT


J
ln�
r/a0� , �33�

and hence the spin-spin correlation function exhibits the
well-known power law decay

�cos��0 − �r��� � �
r

a0
�−kBT/�2
J�

. �34�

Surface effects on the decay of correlations of a two-
dimensional Gaussian model have been analyzed by Cardy
�44�. In the framework of a continuum approximation, the
harmonic Hamiltonian Eq. �31� becomes

H =
1

2
J�

x�0
����r���2dxdy, r� = �x,y� , �35�

where a free surface at x=0 is assumed for an otherwise
semi-infinite system. Due to the free surface, translational
invariance of the correlation function �ei��r�1�e−i��r�2�� of the
order parameter ei��r�� is broken, but due to the Gaussian
character of the Hamiltonian, Eq. �35�, we still have

�ei��r�1�e−i��r�2�� = exp�−
1

2
����r�1� − ��r�2��2��

= exp�G�r�1,r�2� −
1

2
G�r�1,r�1� −

1

2
G�r�2,r�2�� ,

G�r�1,r�2� = ���r�1���r�2�� . �36�

In the continuum, a free surface with no surface fields can be
described by a von Neumann boundary condition,

� �G�r�1,r�2�
�x1

�
x1=0

= 0, �37�

and this condition can be automatically realized by writing

G�r�1,r�2� = G	�r�1 − r�2� + G	�r�1 − r�2�� , �38�

where G	�r��=G�r�1 ,r�2=r�1+r�� for the fully translationally in-
variant infinite system, and r�2� is the mirror image of r�2 with
the surface �the line x=0� being the symmetry axis. Since
G	�r�� is �apart from constants� the correlation given in Eq.
�33�, one finds �44�

�ei��r�1�e−i��r�2�� = � �r�1 − r�1���r�2 − r�2��
�r�1 − r�2�2�r�1 − r�2��

2��/2

,

FIG. 3. �Color online� Schematic descriptions of the two types
of walls used in this paper in order to confine the triangular crystal.
Walls are always oriented along the y axis. The upper part shows
the case of planar walls, described by a repulsive potential Vwall

planar

=�wall�� / �x−xwall��10. The position xwall is chosen such that it re-
places a row of particles otherwise present at this distance. The
choice of the parameters �wall and � will be discussed in Sec. III.
The lower part shows the case of “structured walls,” created by
fixing two rows of particles precisely at the positions of the ideal
triangular lattice �with the same lattice spacing a0 as in the bulk�.
The frozen particles interact with the mobile ones with the same
pair potential V�r� as is acting between two mobile particles a dis-
tance r apart. In this way, “structured” walls provide a potential
corrugated in the y direction and precisely commensurate with the
considered crystal structure.
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� =
kBT

2
J
. �39�

If both sites r�1, r�2 are in the bulk, far away from the surface,
we have �r�1�→	, �r�2�→	, and then �r�1−r�1����r�2−r�2����r�1
−r�2��, for any large but finite �r�1−r�2�. Then Eq. �39� reduces to
Eq. �34�, as it should be.

If site 1 is close to the surface, r�1= �a0 ,y�, we have �r�1

−r�1��=2a0, while �r�2−r�2��=2x if the site r�2= �x ,y� is deep in
the bulk. Then

�ei��r�1�e−i��r�2�� � �4a0x

x4 ��/2

� x−3�/2, �� =
3�

2
. �40�

The result ��=3� /2=3kBT / �4
J� does not seem to be dis-
cussed in the literature �22,44�, while the case that both r�1
and r�2 are near the surface has been again analyzed. Then
r�1= �a0 ,y1� and r�2= �a0 ,y1+y�, and Eq. �39� implies �44�

�ei��r�1�e−i��r�2�� � �4a0
2

y4 ��/2

� y−2�, �	 = 2� . �41�

Since the low temperature phase of the XY model can be
interpreted as a line of critical points, we expect a scaling
relation �13,14� to hold,

�	 = 2�� − � , �42�

and this relation is indeed satisfied by Eqs. �40� and �41�.
Based on numerical data, Berche �22� concluded that the
relation �	 =2� holds also outside of the spin wave regime, at
all temperatures up to the Kosterlitz-Thouless �KT� transition
temperature, where �=1/4 �43� and hence �	 =1/2. Equation
�40� then implies ��=3/8 at the KT transition.

If now a surface magnetic field is applied, a response of a
spin at a site r� deep in the bulk is created. This response
decays towards zero according to �13,14�

��S��r���� = ��exp�i��r����� � x−�/2, for d = 2, �43�

i.e., the same exponent � that controls also the decay of
correlations in the bulk controls also the order parameter
profile. The correlation function between spins which are
both at the surface exhibit then a finite range, however. From
the scaling approach to surface critical phenomena �13,14�
one can predict

�S�0 · S�r�� − �S�0� · �S�r� � exp�− y/�	� ,

�	 � H1
−�1+�/2−��� = H1

−�1−��, �44�

where in the last step Eq. �40� was used. At the KT transi-
tion, the exponent describing the divergence of �� as H1
→0 becomes 1−�=3/4.

Redirecting attention to the harmonic solid, we emphasize
that the case of the planar wall does not involve any “surface
field,” as far as positional order in the y direction parallel to
the wall is concerned. Since the comparison between Eqs.
�24� and �33� shows that the quantity kBT / �2
g� plays the
same role as the exponent � in the XY model, we conclude
that the positional correlations between displacements be-
tween two particles in the surface increase as

��uy�n� − uy�0��2� � �	 ln n , �45�

while the mean-square correlation between a particle near the
wall and another particle deep in the bulk should behave as

��uy�n� − uy�0��2� � �� ln n . �46�

We suggest that the scaling relation, Eq. �42�, between the
exponents �, �	, and �� can be carried over to the present
case as well.

Finally we mention that according to the Kosterlitz-
Thouless-Halperin-Nelson-Young �KTHNY� theory of melt-
ing �25,27,35–39� one should also consider in addition to the
fluid phase �where both orientational and positional correla-
tions have finite correlation range� and to the crystalline
phase �where positional correlations exhibit power law de-
cay, while there exists orientational long range order� at in-
termediate temperatures �and/or densities, respectively� the
hexatic phase. This phase exhibits still short range positional
correlations only, while orientational correlations should
have a power law decay. However, despite a lot of effort, the
evidence �from numerical simulations �45–68� and experi-
ments� for the existence of the hexatic phase is scarce, some
studies did interpret their findings in terms of a weak first
order liquid-solid transition. Although it would be very inter-
esting to study how wall effects show up in the KTHNY
scenario of melting, this problem shall not be addressed here,
since it still would require a prohibitively large computa-
tional effort.

III. MODEL AND SIMULATION TECHNIQUE

We consider a system of soft disks, i.e., point particles
interacting with the inverse power law potential

U�r� = ����/r�p : r � rc

0 : otherwise,
� �47�

choosing a cutoff distance rc=2.5� for computational conve-
nience, and p=12 �as in the repulsive part of a Lennard-
Jones potential�.

As is well known, one can prepare systems of spherical
colloidal particles with various types of interactions: neutral
particles coated with polymer brushes that have a short range
entropic repulsion due to the excluded volume interaction
between the polymers provide a model to approximate hard
spheres �1–4�. Charged colloids �with counterions in the so-
lution� interact with the Derjaguin-Landau-Vervey-Overbeek
potential �69,70�, a screened �Yukawa-type� Coulomb inter-
action. However, of particular interest in our context are par-
ticles containing a superparamagnetic core: if such particles
are held at the air-water interface of a water film underneath
a glass plate and one applies a magnetic field oriented per-
pendicular to the glass plate, one creates a two-dimensional
system of colloidal particles interacting with a uniformly re-
pulsive r−3 interaction �71–74�. These systems have proven
to be valuable model systems for an experimental study of
two-dimensional melting. Thus it would be desirable to con-
sider the case p=3 in Eq. �47� also, which would allow a
rather direct comparison to corresponding experiments.
However, the long range of this potential �which then should
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not be cut off at any short distance, of course� is very incon-
venient for simulations; one would need very large computer
time resources for a meaningful study. As a compromise, we
hence took p=12: then the chosen cutoff produces only
rather negligible errors, and a reasonably fast Monte Carlo
simulation code can be written. A further advantage is that
the melting behavior of the model Eq. �47� in the bulk has
been extensively studied in careful previous work �64�.
Choosing now units of temperature such that �=1 �kB=1�
and length such that �=1, at a density �=1.05 chosen
throughout in the present work melting occurs at Tm
=1.35±0.01 �64�. Note that the homogeneity of the potential,
Eq. �47�, implies that �in d=2 dimensions� excess thermody-
namic properties �relative to the ideal gas contribution� and
the scaled pair distribution functions g�r /�� depend on a
single parameter

x = ��2��/kBT�2/p �48�

rather than on � and T separately �75�.
Next we discuss how to represent the confining walls.

One choice is to take a smooth repulsive wall located at x
=xwall, described by a wall potential �76�

Uwall = �wall��/�x − xwall��10. �49�

The motivation for a decay with the 10th power is the
idea that such a potential would result if we have a semi-
infinite crystal with a power law interaction given by Eq.
�47�, but no cutoff, and the total potential is summed over the
half space: in the continuum approximation, a potential of
the type of Eq. �49� results.

Figure 3�a� illustrates the choice of the geometry: the wall
is oriented along the y axis �at xwall=0� the first row of atoms
is placed at x=a0

�3/2, the lattice spacing a0 being chosen
such that the crystal density is �=1.05, which yields �the
chosen area is A=Na0

2�3/2 for a fixed number of N particles,
�=N /A� a0= �2/�3��1/2�1.049. Normally we choose the
distance D between the walls such that it corresponds to an
integer number of rows in the ideal lattice, D=Nxa0

�3/2, but
also the case of a systematic misfit, D= �Nx+��a0

�3/2, −2
���0, will be briefly addressed �Sec. V�.

The other choice of wall, hereafter referred as “structured
wall” is created by simply taking at x=0 a row of particles
rigidly fixed at the positions of the perfectly ideal lattice with
lattice spacing a0, and a second such row at x=−a0

�3/2, as
shown in Fig. 3�b�. These rigidly fixed particles at x�0 in-
teract with the mobile particles �at positions 0�x�D� with
exactly the same potential, Eq. �47�, as chosen between the
mobile particles. At x=D and x=D+a0

�3/2, two further
such rows of fixed particles are placed, perfectly commensu-
rate with the rows on the other side of the thin strip. Note
that at rather low temperatures, as are studied here, the prob-
ability that particles could move to positions x�0 or x�D
is negligibly small. Therefore �note the cutoff in the poten-
tial, Eq. �47�� it would not have any physical effect on the
system if we placed further rows of fixed particles at posi-
tions x=−
a0

�3/2 or x=D+
a0
�3/2 with 
=2, 3 etc.

This choice of boundary condition thus creates a corru-
gated confinement potential Vstruc�x ,y� which stabilizes the

crystalline order. Clearly, this potential plays the role of a
“surface field” on both the positional and orientational order
parameters of the crystal. The situation is similar to the case
of crystalline monolayers adsorbed on crystalline substrate
surfaces, if the monolayer crystal structure is commensurate
with the crystal structure of the surface �19�.

While Vstruc�x ,y� does not contain any more any param-
eter that could be varied, Eq. �49� still contains as a param-
eter the strength �wall of the flat wall potential, which needs
to be chosen with care. If �wall is chosen too large, the rows
of particles next to the wall are “pushed away” from the wall,
and then the distance between the first and second row in the
x direction �as well as the distance between the second and
third row, etc.� will be smaller than the value a0

�3/2 which
is expected for a perfect triangular lattice with lattice spacing
a0. Note that the lattice spacing a0 is fixed a priori by choos-
ing a periodic boundary condition in the y direction, the lin-
ear dimension being precisely L=Nya0, and then for the ideal
triangular lattice with Nx rows in the x direction we have N
=NxNy for the total number of particles, and D=Nxa0

�3/2,
as noted above. While this structure results for the “struc-
tured wall” boundary condition trivially by construction, for
the planar wall the actual distance d between rows does de-
pend on the parameter �wall, as Fig. 4 shows �76�. It is seen
that for �wall=0.0005 the distance d between rows coincides
within error with the ideal value a0

�3/2, while for larger
�wall the distance d is systematically smaller �remember that
the distance between both walls is fixed, and when the dis-
tance of the first and last row from the adjacent wall in-
creases less space is available for the remaining rows and
hence d must decrease�.

Conversely, for the “hard wall” boundary condition the
distortion goes into the opposite direction, the first �and last�
rows are closer to the hard walls than would be expected if
there were a row of particles, and hence more space is avail-
able for the remaining rows, d must increase. The compari-
son of the two choices for Nx shows �Fig. 4� that this distor-
tion is distributed rather uniformly over the strip, and hence
this deformation of the lattice �strictly speaking, we get the
symmetry of a centered rectangular lattice rather than an
ideal triangular lattice� systematically depends on D. A fur-
ther consequence of this distortion is the fact that the angle �
between rows �Fig. 5� which is �=60 for an ideal triangular
lattice deviates from this ideal value, of course. However,
Fig. 5 confirms the expectation from Fig. 4 that for �wall
=0.0005 no such distortion occurs. Therefore we have cho-
sen �wall=0.0005 for the further studies throughout.

Apart from the study of the lattice structure and the mean-
square displacements and positional and orientational order
parameters and their correlations there is also considerable
interest in the elastic constants of two-dimensional crystals.
Remember that the dependence of these elastic constants on
temperature �or density, respectively� plays a crucial role in
the theory of two-dimensional melting �27,35–39,68�. Again
one expects a significant effect of the symmetry of the crystal
structure: while for a centered rectangular lattice all four
elastic constants C11, C22, C12, C23 �we employ the Voigt
notation here �33�� will differ from each other, for a perfect
triangular crystal we expect in the bulk the symmetry rela-
tions
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C11 = C22, C12 = C23. �50�

Note that the second of these relations follows from the
Cauchy relations for centrally symmetric pair interactions
�33�.

In the present work, elastic constants were extracted from
the simulations applying the method where strain fluctua-
tions in subsystems are analyzed �67,76,77�. Table I com-
pares the results obtained from this method for two choices
of �wall with the corresponding bulk values. To test the
method for systems in the presence of walls also the standard
method using the correlation functions of stress fluctuations
�78� is used as well. For the bulk case the stress tensor is
simply calculated from the virial expression �75,78� comput-
ing the statistical average ��ij�,

�ij =
1

LD� 

���

U��R���
Ri

��Rj
��

R�� − NxNykBT�ij� , �51�

where the summation extends over all pairs of particles �, �,

Ri
�� is the ith component �i=x ,y� of the vector R� ��=R� �

−R� �, R� �, R� � being the positions of particles � and �, and

R��= �R� �−R� ��, U��R�=dU /dR. In the case of systems con-
fined between walls, additional terms due to the walls occur,
that have been discussed extensively by Varnik et al. �79�.
The elastic constants then can be expressed in terms of a
reduced correlation function of the observable Eq. �51�
whose average yields the stress tensor, involving also a term
containing the second derivative of the potential U��R���
�78�. The generalization to the case including planar walls

FIG. 4. Distance �in units of �, �=1� of rows number �=1, 2, 3,
4, 5 from the left wall for two choices of D corresponding to �a�
Nx=20 �D=18.163� and �b� Nx=30 �D=27.245�, for four different
choices of �wall. Also the alternative “hard wall” boundary condition
and the theoretical values �a0

�3/2 �denoted as “bulk”� are in-
cluded. All these data are taken at a temperature T=1. �wall and T
are given in units of � ��=1�.

FIG. 5. �Color online� Definition of the angle � between lattice
rows �a� and a plot of the observed angle � for D=27.245 and T
=1 vs �wall �b�. �wall and T are given in units of � ��=1�.

TABLE I. Elastic constants of a two-dimensional strip and the
corresponding bulk elastic constants �in Voigt notation�. All data
were extracted from a system with Nx=20 and Ny =120. The first
entry is the subsystem method, the second is the stress fluctuation
method. Relative errors of the results are about 1–2 %.

�wall 0.0005 0.0050 bulk

C11 120.1 123.3 136.1 132.2 126.5

C22 130.0 127.6 125.0 122.6 127.0

C12 35.6 38.3 43.6 40.6 42.8

C33 25.6 20.3 24.2 18.8 42.3
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�following �79� the walls can be treated like particles having
infinite mass and contributions to the forces only in the x
direction� is straightforward but the resulting expression �80�
is rather clumsy and hence is not reproduced here. Similarly,
we do not describe further the method for how one extracts
the elastic constants from strain fluctuations in subsystems,
since detailed expositions can be found in the literature
�67,76,77�. Note that for the data in Table I the Monte Carlo
moves have been constrained �as described in �77�� to disal-
low the formation of dislocations, but in practice this con-
straint had almost no effect at the low temperature consid-
ered �T=1�.

One sees from Table I that in the bulk the symmetry re-
lations Eqs. �50� are fulfilled within statistical errors. For the
confined system, a mild violation of the relation C11=C22 is
found, while the second relation C12=C33 is strongly vio-
lated. Within our statistical errors, both methods to compute
elastic constants agree with each other. Choosing �wall
=0.0005 where the structure is closest to the ideal triangular
lattice does not bring the elastic constants C12 and C33 close
to their bulk values, however. We shall return to this problem
in the next section.

IV. NUMERICAL RESULTS

A good qualitative insight into the effect of confining
walls on the order of two-dimensional solids is obtained by
superimposing snapshot pictures of the instantaneous posi-
tions of the particles �Fig. 6�. In the disordered fluid phase
far above melting �Fig. 6�a�� the system in the bulk then
yields a uniform grey pattern, reflecting the fact that in a
fluid the density is homogeneous. However, near the walls
we recognize in both cases a nonuniform density distribu-
tion; the density is enhanced in layers parallel to the walls
and depleted in between. This density modulation �“layer-

ing”� decreases as one moves away from the walls towards
the bulk. While for the planar wall boundary conditions the
density distribution is inhomogeneous in the x direction nor-
mal to the walls but homogeneous in the y direction, in the
fluid phase, we also recognize a local ordering in the y di-
rection close to the wall for the structured wall boundary
condition. In the crystalline phase �T=1.0, Fig. 6�b��, how-
ever, the crystalline order now is stable in the bulk as well as
near the walls. Of course, on the small length scales visual-
ized here the fact that the increase of the displacement cor-
relation function ��u��r��−u��0��2� with distance r� ultimately
destroys positional long range order is not visible. We recog-
nize, on the other hand, already from the snapshot pictures
that the walls affect this order in a rather different manner:
while the mean-square displacement of the particles away
from the lattice positions of the ideal crystal structure is uni-
formly smaller for the particles close to a structured wall,
there occurs a pronounced anisotropy of fluctuations close to
a planar wall: There is a clear reduction in the spread of the
dark region in the x direction for the first few rows adjacent
to the wall, while in the y direction the extent of the dark
region �which is a measure of the local mean-square dis-
placement in that direction� is strongly enhanced.

We have studied the layering phenomena in the strips by
recording the average density profiles in the x direction
�Figs. 7 and 8�. Since ��x� exhibits the symmetry ��x�
=��D−x�, only the left half of the strip is shown. For low
temperatures, such as T=1, we see that the layering effect
�enhancement of ��x� around the ideal positions of the lattice
rows� is visible over a few layers only �five layers in the case
of T=1�, and then the bulk behavior is reached. Approaching
the melting transition from the opposite side, however, we
see a somewhat larger range over which layering can be
observed. While for T=1.8 �and higher� for 10�x�20 the
density is uniform in the thin strips and agrees with the den-
sity in the bulk, irrespective of the boundary conditions at the
wall, already for T=1.6 a weak density modulation is still
left even in the center of the strip. Thus the increasing range
of the layering effect as one approaches the melting tempera-
ture Tm from above reflects the existence of an increasing
correlation length � of positional order. As is well known, �
remains finite at Tm if the transition is first order, while �
should diverge to infinity at the transition from the hexatic
phase to the crystal, if the KTHNY scenario of two-
dimensional melting applies �25–27,35–39�. In principle, one
could try to use the layering phenomenon due to walls to
extract information on �. In practice, this is rather difficult in
the transition region, however, since the finite strip width D
causes important finite size effects. This is demonstrated in
Fig. 8, where data for T=1.4 are shown: Using data only for
nx=30 well-defined ordering in a layered structure is en-
forced over the entire strip, while the bulk at T=1.4 clearly
has melted, and the bulk density distribution already is uni-
form. A comparison with corresponding data for nx=60
�Fig. 8� shows, however, that now the strip is disordered in
its center, and also the amount of layering near the walls is
systematically smaller than was found for nx=30. As a
consequence, a reliable estimation of � for T near Tm
would require a systematic variation of the strip width

FIG. 6. �a� Configurations of the particles in the first nine rows
adjacent to the left wall at T=1.6, for the structured wall �left� and
the planar wall �right�. 1000 configurations of a run lasting 106

Monte Carlo steps �MCSs� per particle are superimposed, fixing the
center of mass of the mobile particles in each configuration in the
same position. The linear dimensions were L=30 and nx=30, with
periodic boundary conditions in the y direction. �b� Same as �a� but
for T=1.0. T is given in units of � ��=1�.
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D=nxa�3/2 over a wide range, in order to be able to ex-
trapolate the results towards D→	. The huge computer re-
sources required to do this have prevented us from carrying
out such a systematic study of two-dimensional melting via
surface effects. A naive fit of the density differences
��xmax�−� at the maxima positions xmax in the range 3�x
�57 to a function proportional to 
exp�−x /��+exp��D
−x� /��� yields the data shown in Fig. 9. In principle, we
expect that � should not depend on the type of boundary
condition at the wall: only the prefactor of the above func-
tion should. This expectation is borne out for T=2 and

T=1.8, within the statistical errors. while for T�1.6 the re-
sults for the case of structured walls are slightly but system-
atically larger. Presumably this effect is due to a nonlinear
response of the density distribution ��x� to the perturbing
“field” created by the walls, which is expected for x close to
both walls.

In principle, this problem can be avoided by restricting
the fit to the inner region of the strip, where the density
oscillations around the average density are small enough
�Figs. 7 and 8� so that such nonlinear effects are negligible,
but then the problem is that due to the statistical noise of the
data the statistical errors of � become much larger.

We now turn to the behavior of the local orientational
order parameter ���6�x��2�, Fig. 10. As expected on theoret-
ical grounds �see the discussion of Fig. 2�, we see that both
boundary conditions enhance the orientational order near the
walls in a similar manner. While for T�Tm a clearly devel-
oped flat plateau is observed for 10�x�20, for T�Tm the
residual order parameter near the center of the film is not
constant over an extended region of x. Thus the fact that
���6�x��2� is still nonzero everywhere in the thin strip even at
temperatures far above Tm again is clearly a finite size effect!
Consequently, plotting ���6�x=D /2��2� vs T �Fig. 11�a�� the
melting transition does not show up by a clear vanishing of
this mean-square order parameter, but near T=Tm there is a
mild inflection point in the curves, and for T�Tm one finds

FIG. 7. �Color online� Density distribution ��x� plotted vs x for
nx=30 and various temperatures: T=1.0 �a�, 1.2 �b�, 1.6 �c�, and 1.8
�d�. The center of the strip �x=D /2� is marked by a vertical line.

FIG. 8. �Color online� Density distribution ��x� vs x for T
=1.4 and planar walls in the case of nx=30 �thin line� and nx=60
�thick line�, respectively.

FIG. 9. �Color online� Correlation length � for the decay of the
positional order near the walls plotted vs temperature, for a system
with nx=60, ny =60, and for the two types of boundary conditions at
the walls. � is given in units of � ��=1�, T in units of � ��=1�.
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the “finite size tails” well known from simulation studies of
other phase transitions, too �81,82�.

Again one can associate a correlation length � �which
should be twice the correlation length �6 defined in Sec. II,
since we deal with the order parameter square�, fitting the
data again to a function of the type A
exp�−x /��+exp��D
−x� /���, where A is an amplitude factor depending on the
type of boundary condition. Figure 12 shows that this corre-
lation length also is very small at high temperatures, and
increases slightly faster than the positional correlation length
does �Fig. 9�.

Of course, it is also possible to study the orientational
correlation function g6�r�� �Eq. �14��. However, while this
correlation function is translationally invariant in the bulk, in

a system with walls such a translational invariance holds in
the y direction only. Hence we study the decay of the corre-
lation in the y direction for two sites within the strip which
are the same distance x away from the left wall,

g�x,y� = ��6�x,0��6�x,y�� . �52�

Figure 13 gives a global view of this function for three tem-
peratures. One can clearly see that near the walls there is
very little y dependence at all temperatures, due to the high
degree of orientational order enforced at the walls. In the
center of the strip, there is again little variation at low tem-
peratures �T=1�, where the system everywhere is well or-

FIG. 11. �Color online� Mean-square order parameter in the cen-
ter of the strip �a� and near the walls �b� plotted vs temperature.
Circles refer to the planar wall and squares to the structured wall
boundary condition, respectively. All data refer to nx=ny =30. T is
given in units of � ��=1�.

FIG. 10. �Color online� Plot of the local orientational order pa-
rameter square ���6�x��2� vs x, for nx=ny =30 and two temperatures,
T=1.2 �a� and 1.6 �b�. Circles refer to the planar wall and squares to
the structured wall boundary condition, respectively.

FIG. 12. �Color online� Correlation length ex-
tracted from the decay of the local orientational
order parameter square with distance �Fig. 10�
plotted vs temperature. Circles refer to the planar
wall and squares to the structured wall boundary
condition, respectively. All data refer to nx=ny

=30. � is given in units of � ��=1�, T in units of
� ��=1�.
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dered, and at high temperatures �T=1.8�, where the system in
the center is almost disordered. In contrast, close to the tran-
sition �e.g., for T=1.4� a slow variation of g�x ,y� with both x
and y is observed. Due to the residual order which occurs in
g�x ,y� for large distances, apart from the limiting case of
very large D and correspondingly large enough x in the
middle of the strip, we have not succeeded in a convincing
quantitatively reliable analysis of the functional variation of
g�x ,y�. This problem hence must be left to future work.

A quantity of considerable experimental interest is the
structure factor S�q��, of course �Eq. �11��. We have analyzed
this quantity as well, orienting q� along the y direction. As an
example, S�q� is plotted vs q at T=1 in Fig. 14, for both
types of boundary conditions �83�.

Figure 14 shows that for the structured wall sharp Bragg
peaks result. As expected, the height of these peaks decreases
with increasing q due to the effect of the Debye-Waller fac-
tor, but the width does not increase with increasing q, and
this behavior is exactly as it should be for Bragg scattering
from ordinary ideal crystals at finite temperature. We have
also checked that the peak heights scale proportional to the
number of particles per row �the first peak has a height of 79
for 100 particles per row but only 24 for 30 particles�. In
contrast, no such simple size dependence occurs for the
structureless repulsive boundary. In this case a typical fluid-
like structure factor results, but with heights of the first two
peaks which are much larger than for typical fluids �remem-
ber that in three-dimensional fluids at the melting tempera-
ture the first peak of S�q� reaches a height of about 3 �75��.
In fact, this structure factor is almost in quantitative agree-
ment with a fit of S�q� to the result for the one-dimensional
harmonic chain, Eq. �8�, adjusting a single parameter in that
equation, namely �=0.07. Remember, however, that in Fig.
14 we do not deal with a true one-dimensional system, but
rather with a system of 30 rows confined between two
boundaries, and that the state of the system is not like a fluid,
as a glance on the configuration picture �Fig. 6�b�� shows. In

FIG. 13. �Color online� Correlation function g�x ,y� for nx=ny

=30 and T=1 �upper part� or 1.8 �middle part�, respectively. In the
projection the numerical values of this function according to a grey
scale are indicated. The lower part shows analogous results for T
=1.4 and nx=ny =60. Note that the y coordinate is shown only in the
range 0�y�ny /2, since g�x ,y�=g�x ,ny −y�, due to the periodic
boundary condition in the y direction.

FIG. 14. Static structure factor S�q� at T=1 plotted vs qd /2
 for
structured walls �a� and planar walls �b�. All data are for systems of
nx=30, ny =100. For the planar walls the full curve is a fit to Eq. �8�,
� is taken from Ref. �83�.
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a fluid, one would see lots of dislocations in a snapshot of a
single configuration at various places, and superimposing a
large number of such snapshots a uniform density distribu-
tion results �as displayed in Fig. 6�a�, away from the walls�,
which is not the case here, where locally a crystalline struc-
ture is found, and only the long range order in the y direction
�but not in the x direction perpendicular to the walls� is de-
stroyed. Thus the system may be viewed as a kind of two-
dimensional smectic phase, a phase with orientational long
range order but positional long range order in one direction
only. Thus it would be completely wrong to interpret the
destabilization of crystalline two-dimensional long range or-
der by flat structureless walls as surface-induced melting. If
surface-induced melting occurred, we would find lots of dis-
locations near the boundaries, which is not at all the case
here �while this may occur for very small D incommensurate
with the layer spacing d=a�3/2, see �6��. In fact, we have
used the algorithm of �67� to check the formation of dislo-
cation pairs from a local coordination. Apart from the rows
adjacent to the walls, the coordination number of each par-
ticle in a triangular structure is 6, while dislocations show up
via a fivefold or sevenfold coordination, and at the walls the
coordination number of each particle in a triangular structure
is 4, dislocations showing up via threefold or fivefold coor-
dination. We have found that at T=1 the average density of
dislocations is 10−5, and this explains why no dislocation pair
is seen in typical snapshot pictures such as Fig. 6�a�.

The fact that the two-dimensional crystal bounded by pla-
nar walls has a crystalline order only on large but finite
length scales, as is evidenced by its fluidlike structure factor
�Fig. 14�, has also drastic consequences on its elastic behav-
ior. Figure 15 compares the elastic constants of this system
with the corresponding case of crystalline strips of various
thicknesses but with the structured wall boundary condition.
Since this latter boundary condition pins the long-range or-
der at boundaries, the order is stabilized throughout the sys-
tem. For a number of rows n exceeding about n=30 one
finds that all elastic constants have then converged towards
the elastic constants of a bulk system �with periodic bound-
ary conditions in all directions�. Conversely, this is not true
for the system with planar walls: while C11, C22, and C13
converge to bulk behavior in a similarly rapid way, C33 does
not. Rather we find

C33�n� � C33
bulk/2, �53�

apparently independent of the number n of rows in the thin
strip! If we look at the elastic moduli we have to take into
account also a correction due to the pressure, namely for the
shear modulus we have

� = C33 − P̄ , �54�

where

P̄ =
1

2
��xx + �yy� , �55�

with ��� we indicate here the stress tensor. This indicates
that the system has a vanishing shear modulus, i.e., the crys-
tal is intrinsically unstable. The question of how for the elas-

tic constants the thermodynamic limit is approached is in-
triguing. The planar boundaries provides an elastic distortion
of long range �84� to the crystal, and hence the crystalline
behavior is significantly modified.

In order to provide further clarification to this lack of
stability of crystalline order in finite systems with planar
walls we have evaluated the displacement correlation func-
tion ��uy�n�−uy�0��2�, using both the theory of Sec. II �Eqs.
�19� and �20��, with the above elastic constants of the bulk
crystal as an input, and directly from the simulation �Figs.
16–18�. Figure 16 shows that for large enough L the linear
relation obtained in Eq. �27� is in fact reproduced, for large
enough L and D�n�L. However, when n becomes of the
order n�2D or smaller, deviations set in �due to the cross-
over towards the logarithmic behavior, Eq. �24��, while for
n�L /4 deviations set in due to the symmetry implied by the
periodic boundary condition that limits the linear increase
implied by Eq. �27�. In order to test for the initial logarithmic
increase of B�y�= ��uy�y�−uy�0��2� with y, the data for D
=20, L=500 of Fig. 16 are replotted on linear-log scales in
Fig. 17, and data from a direct Monte Carlo simulation of
this system are included. One can see that the harmonic
theory and the Monte Carlo results are in quantitative agree-
ment, with no adjustable parameters whatsoever! A similar
agreement has also been found in studies of the low tempera-
ture phase of the XY model �21,22�, which has been dis-
cussed as a simpler reference system in Secs. I and II. From
this work �21,22� it is also clear that this agreement breaks

FIG. 15. �Color online� Elastic constants �in units of kBT /�2� for
structured walls �a� and planar walls �b� plotted vs the number of
rows n between the walls. The Voigt notation for the elastic con-
stants is used. Horizontal straight lines show the bulk values of the
corresponding triangular crystal, for which the symmetries C11

=C22 and C12=C33 hold.
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down near the Kosterlitz-Thouless �25� transition �due to
vortex pair formation the spin wave stiffness of the XY
model gets renormalized�, and similarly we expect that the
agreement seen in Fig. 17 gets worse when the melting tran-
sition is approached: we expect that the elastic constants get
renormalized due to dislocation-pair formation �27,35–39�.
Although it would be very interesting to study our model at
temperatures closer to the melting transition, we have not
attempted to do this due to the enormous difficulties of ob-
taining well equilibrated simulation data. Already at T=1 for
y�50 Fig. 17 displays huge statistical errors, in spite of a
run that lasted for many weeks at Pentium 4 or Xeon
2.66 Ghz processor. Therefore it is likely that there is no
systematic discrepancy between the harmonic theory and the
Monte Carlo results even for y=L /2=250. Anyway, one can
see that for y�40 the increase of B�y� with y is stronger than

the initial logarithmic behavior. However, from Fig. 16 it is
clear that the linear behavior according to Eq. �27� cannot
really be seen, because the effects due to periodic boundary
condition start rather early.

Figure 18 compares interesting results for the harmonic
theory �Eqs. �19� and �20�� with Monte Carlo results for the
case D=20, L=100, including also data for a system with
planar walls, for the layers closest to the walls. In this case
there seems to be some systematic discrepancy between the
Monte Carlo data and the harmonic theory, but the general
trend is similar. Having found above that the periodic bound-
ary condition starts to be felt at n�L /4 already, no trace of
an increase of B�y� with y stronger than logarithmic is seen
in this case. An interesting feature, however, is the faster
increase of the displacement correlation function of particles
adjacent to a hard wall, for a system of the same linear di-
mensions �D=20, L=100� but with two planar walls along
the y axis rather than a periodic boundary condition. Unfor-
tunately, the mild curvature of the data in Fig. 20 �due to the
periodic boundary condition in the y direction, which is
strongly felt for y�L /4=25� prevents us from making pre-
cise statements about the relation between the slope in the
relations B�y�� ln y for a two-dimensional crystal surface ad-
jacent to a flat wall and in the bulk, respectively. Recall that
these prefactors are the analogs of the exponents �	�T� and
��T� in the XY model, respectively �cf. the discussion from
Eq. �31� to Eq. �46��. From Eq. �41� one would expect that
the slope of the relation B�y�� ln y for a row adjacent to a
wall is twice as large as the slope in the bulk.

Figurs 16–18 emphasize the aspect that a crystal in two
dimensions is a critical system, as far as positional long
range order is concerned. The instability of this order, evi-
denced by the growth of the displacement correlation func-
tion with distance, is enhanced by hard wall boundary con-
ditions, similar to an XY model with free surfaces. This
enhancement of fluctuations at the free surface �or hard wall,
respectively� is felt over very large distances in the x direc-
tion, where also an anomalous enhancement of fluctuations
exists �cf. Eq. �40��. Presumably, these long range effects of

FIG. 16. Displacement correlation function B�y�= ��uy�y�
−uy�0��2� plotted vs y, calculated according to Eqs. �19�–�21�, for
L�D systems with D=20 and L=500, 1000, and 2000, as indicated
in the figure. Periodic boundary conditions are used in both x and y
directions. As input parameters, the Lame coefficients �=42, �
=41, and the hydrostatic pressure p=17.4 �all these parameters are
quoted in units of kBT /�2� are taken, as obtained from the Monte
Carlo simulation of the model, Eq. �47�, at T=1 in the bulk. Note
that B�y� exhibits a symmetry B�y�=B�L−y� due to the periodic
boundary condition. B�y� is given in units of �2 ��=1�.

FIG. 17. Comparison of B�y� according to the harmonic theory
�Fig. 16�, squares with corresponding Monte Carlo data �full dots
with error bars�, for a system with linear dimensions D=20, L
=500, and periodic boundary conditions. Note the linear scale of the
ordinate, while the abscissa is logarithmic. B�y� is given in units of
�2 ��=1�.

FIG. 18. Comparison of B�y� according to the harmonic theory
�squares� with corresponding Monte Carlo data �open circles�, for a
system with linear dimensions D=20, L=100, and periodic bound-
ary conditions. The diamonds show corresponding Monte Carlo
data for a system with planar walls, using only the displacement of
particles in the rows adjacent to the walls. B�y� is given in units of
�2 ��=1�.
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free surfaces are responsible for the difference between
C33�n� for thin strips of n layers bounded by hard walls, and
the corresponding systems with periodic boundary condi-
tions in all directions.

V. STRIPS WITH WIDTHS THAT ARE
INCOMMENSURATE WITH THE TRIANGULAR

LATTICE STRUCTURE

In the previous sections, the strip width D was carefully
chosen such that the ideal triangular lattice structure �e.g.,
with 30 rows� fits into the strip as perfectly as possible �re-
call Figs. 4 and 5, and accompanying discussion�. Of course,
it is also of interest to ask what happens when such a choice
is not made, and D does not correspond to an integer mul-
tiple of the distance a�3/2 between rows in Fig. 2. Such
questions have been considered in the literature �e.g., Refs.
�6,11�� for ultrathin strips �containing a few rows only� and
structures rather rich in defects �as compared to the ideal
triangular lattice� were found. Here we ask the same question
for a rather thick strip, and we shall show that the equilib-
rium states are elastically distorted �but otherwise defect-
free� structures. However, varying D one can observe transi-
tions in the number of rows �n→n±1� and these transitions
are nucleated by the formation of dislocation pairs. Similar
transitions in the number of layers or rows parallel to the
bounding walls have also been observed for hard disk sys-
tems �9,10� in the canonical ensemble, as well as in a semi-
grand-canonical study �85� where disks could be exchanged
between the confined strip and a surrounding liquid bath.
This points to the fact that such transitions are, in fact, ubiq-
uitous and do not depend on the detailed nature of the system
considered.

Thus we consider a geometry where in the y direction we
maintain a linear dimension commensurate with the triangu-
lar lattice having a lattice spacing a, while in the x direction
a misfit � is introduced,

Lx = D = �3a�nx + ��/2, Ly = nya , �56�

where in the following numerical examples we choose the
integers nx=30, ny =30.

In principle, � can be any real number. We have found
that for positive � �which implies a reduction of density in
the system� one can observe a melting transition in the center
of the strip, while the rows near the walls remain ordered
�the situation is qualitatively analogous to the situation at
higher temperatures in the commensurate case, cf. Figs. 6
and 7�.

More interesting is the case of negative �, which means
enhancement of the density since the number of particles in
the rectangular box Lx�Ly is kept strictly fixed. For small
��� there is no change in the number of rows, but the lattice
structure needs to deform �relative to the ideal triangular lat-
tice in the bulk� to accommodate all the particles in the
smaller area. Figure 19 shows the probability distribution of
the order parameter �G� 0

�defined in Eq. �10�� for the case of
structured walls.

Since due to the change of the angle � �Fig. 5� G� 0 is not
a reciprocal lattice vector for the deformed lattice any more,

we see that the larger ��� becomes the more P��G� 0
� gets

shifted to the smaller values of �G� 0
, as expected.

More interesting is the distribution of the order parameter
�G� 1

, since �Fig. 2� the reciprocal lattice vector G� 1 is directed
along the x axis, orthogonal to the walls, and as long as
we still have nx=30 layers in the strip P��G� 1

� indicates a
well-ordered system with a large value of �G� 1

. In fact for
�=−1 the distribution is centered at a somewhat larger value
than for �=0, and the peak is clearly sharper: this happens
because the compression of the strip in the x direction re-
duces the fluctuations in that direction, the particles are more
confined in their rows. However, when � becomes negative
enough, such as �=−1.5, the situation changes, P��G� 1

� now
is peaked near �G� 1

�0.5, and for �=−2.0 the peak occurs
near �G� 1

�0.1 �Fig. 19�b��. The reason for this behavior is
that a transition from n=30 to n=29 rows occurs, as is evi-
dent from Fig. 20�a�. Note that in the upper part of the sys-
tem shown in Fig. 20�a� one counts 30 rows, while in the
central part there are only 29! For �=−2.0, however, one has
29 rows throughout the system �although one dislocation pair
necessarily is still present, since in 29 rows now containing
31 particles per row each one can accommodate only 899
rather than the total 900 particles, the extra particle causing a
corresponding lattice defect �Fig. 20�c��. While one can rec-
ognize that in the rows adjacent to the walls some of the
particles seem to be well localized at the lattice positions,
this is not the case for a number of particles whose positions
seem to be smeared out along the y direction. This structure
results from the fact that the wall atoms fixed at ideal lattice
positions create a periodic potential with 30 potential wells
in the present choice of linear dimensions, but 31 particles
per row need to be accommodated. This does not happen by

FIG. 19. �Color online� �a� Probability distribution of the order
parameter �G� 0

in the case of structured walls for nx=ny =30, T=1
and several values of � as shown. �b� Same as �a� but for �G� 1

.
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uniform compression of the distance between the particles,
but rather this density enhancement is localized in a kind of
solitonlike excitation which can diffuse along the row in the
y direction, This interpretation is supported by a closeup of
the structure �Fig. 20�d��, which also clearly shows that this
defect of order in the first row propagates somewhat towards
the interior rows of the strip. One can also recognize a slight
bending of the rows.

It is also interesting to study the stress �=�yy −�xx �10�,
see Fig. 21, where � is plotted as function of ���. In the
regime of the critical linear increase, the stress is propor-
tional to the geometrical strain �̃ measured with respect to
the ideal bulk triangular lattice, �̃= �a−ax� /a= ��� /n, ax being
the lattice parameter corresponding to the reduced distance
between rows in the x direction. After the initial increase we

see a discontinuity at �c �with about �� � =1.5� where the
system has started its internal structural rearrangement. Note,
however, that for larger values of ��� the behavior is ex-
pected to be rather subtle: our structured wall boundary con-
dition involves 30 particles per row, while—as discussed
above—for �� � � ��c� the system has 31 particles per row in
the y direction: so the “corrugation potential” provided by
the walls is then incommensurate with the structure. In fact,
with such an incommensurate wall potential we no longer
expect any stabilizing effect on the positional long range
order in the y direction in the system �19�. Also subtle finite
size effects �associated with the finite size of ny =30 atoms
per row in the rows forming the wall potential� must be
expected. A detailed study of these incommensurate struc-
tures for �� � � ��c� is beyond the scope of the present work,

FIG. 20. �Color online� �a� Su-
perimposed configurations in the
case of a system with nx=ny =30,
T=1, �=−1.5, using the struc-
tured wall boundary condition.
The top picture �a� shows the
whole simulation box, while the
middle part �b� shows a closeup of
a dislocation pair, the sites with
five or seven nearest neighbors,
highlighted by full or broken
lines, respectively. �c� Same as
�a�, but for �=−2.0; 100 configu-
rations are superimposed. �d� A
close up near the wall of the figure
in �c�.
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however, and must be left to future studies. We only note
again that the superimposed snapshots for �� � =2 �Figs. 20�c�
and 20�d��, look much less ordered than their counterparts
for �� � � ��c�, due to these misfits between the system and its
boundaries.

Also for the flat wall boundary condition the effect of
varying � has been studied, and again a transition from nx
=30 to nx=29 rows for sufficiently negative � was found.
E.g., for �=−1.6 even a bimodal distribution of �G� 1

was
found �80�. A detailed analysis of these data revealed that the
system stayed in the ordered state with nx=30 rows for about
30 000 Monte Carlo steps �MCSs� per particle and then a
rather sudden transition to a state with nx=29 rows occurred,
which remained stable for the remaining time of the run �up
to 105 MCSs� �80�. While a detailed study of the kinetics of
this phase transformation in such a simulation would be fea-
sible, we are not presenting this here because the Monte
Carlo method implies an artificial dynamics �82� which is not
related to the actual dynamics of colloidal systems.

VI. CONCLUSION AND OUTLOOK

The effect of confining boundaries on the crystalline order
of two-dimensional particles interacting with a pairwise re-
pulsive potential was studied both by Monte Carlo simula-
tions and by theoretical arguments, mostly based on the har-
monic theory of crystal lattices. This study was motivated by
possible experimental study of colloidal systems, which have
proven to be an excellent model system for the experimental
investigation of two-dimensional melting, and for which al-
most arbitrary boundary conditions can be created, for in-
stance by strong laser fields. But also applications to a broad
variety of other systems are conceivable �dusty plasmas,
electrons at the surface of liquid helium, etc.�, as discussed in
the Introduction, and hence we did not “tailor” our model to
simulate a particular real system as faithfully as possible, but
rather we have concentrated on the generic aspects of the
problem, and thus we have chosen a model which is compu-
tationally still relatively convenient, with an inverse power
law �with a power p=12�, and two types of confining bound-
aries, a structured wall �created by two rows of particles
fixed in the positions of an ideal triangular lattice at the same

density� and a flat planar wall �created by a repulsive poten-
tial of a strength tuned such that a minimal perturbation of
the triangular crystal structure of the confined strip results�.

The emphasis of our study has been to explore the conse-
quences of the fact that even a bulk two-dimensional crystal
is a critical system, which has only orientational long range
order, while the positional long range order shows a power
law decay of the appropriate correlation function �or, equiva-
lently, the correlation of mean-square displacement shows a
logarithmic increase with the distance between the particles�.
It was argued that the effect of confinement on such a system
has several aspects: �i� due to the finite thickness D of a strip
confined by two parallel boundaries a distance D apart, the
system is quasi-one-dimensional �assuming that the other lin-
ear dimension L in the direction parallel to the walls is very
large, ideally infinite�. Already in a system with periodic
boundary conditions in all directions, then a crossover occurs
from the logarithmic increase of the mean-square displace-
ment correlation to a linear increase with distance between
the particles. This effect is even enhanced for a strip with flat
planar boundaries, while for structured boundaries the crys-
talline order is stabilized, and the anomalous increase of the
displacement correlation is suppressed.

Another consequence of confinement of two-dimensional
crystals becomes apparent when one compares them to the
analogous problem of surface effects on the two-dimensional
XY ferromagnet. There the ferromagnetic long range order is
absent, since �in the bulk� the displacement correlation g�r�
= ���0−�r�2� between the angles � of spins a distance r apart
increases logarithmically, g�r�=2� ln r+const, for large r, �
being the well-known exponent describing the decay of the

spin-spin correlation function, �S�0 ·S�r��r−�. �Recall that

�S�0 ·S�r�=exp�− 1
2 ���0−�r�2�� in the harmonic approximation

that is considered here.� If both spins are at a free surface,
this exponent is enhanced, g	�r�=2�	 ln r+const with �	

=2�, and also if one spin is at the surface and the other one
deep in the bulk one also finds an enhancement, g��x�
=2�� ln x+const, with ��=3� /2. Similar enhancements of
the displacement correlation functions in crystals are to be
expected, too, if both �or one� of the considered sites lies
next to the boundary. In fact, the numerical results �Fig. 18�
are compatible with a relation �	 =2�, although due to finite
size effects it is not possible to generate a very strong evi-
dence for this relation. The long range effect that a boundary
has in the x direction perpendicular to the boundary is prob-
ably responsible for the anomalous behavior of the shear
modulus of the strips confined by flat planar boundaries,
which is vanishingly small �or at least an order of magnitude
smaller than in the bulk�. This apparent instability of the
system against shear deformation in the y direction parallel
to the boundaries implies that the system behaves like a two-
dimensional smectic. Note that this instability �which we
have found at a temperature T=1, in reduced units, while
melting occurs at about Tm�1.35� is not related to the for-
mation of dislocations. We do find dislocation pair formation
as a mechanism for transitions in the number of rows �nx

→nx−1� when we choose the strip thickness incommensu-
rate with the proper triangular lattice structure at the chosen
density, however. These transitions occur for both types of

FIG. 21. Internal stress � �in LJ units� inside the strip plotted vs
���, for the case nx=ny =30, T=1, and the structured wall boundary
condition.
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boundary conditions, structured walls as well as flat planar
walls. For the commensurate thickness of the strip, however,
the structured wall suppresses the instability discussed
above, and all elastic constants smoothly converge towards
their bulk values as the strip thickness increases.

It also needs to be emphasized that the behavior studied in
the present paper has nothing to do with surface-induced
melting. In fact, a study of the system at T�Tm rather shows
evidence of surface-induced crystallization, since both types
of boundaries cause a very strong layering effect in the x
direction normal to the boundaries. This layering also im-
plies that some residual orientational long range order is
present at this strip at all temperatures. Moreover, it is shown
that from an analysis of the decay of the surface-induced
positional and orientational order one can extract information
on the corresponding correlation lengths already in the fluid
phase. Since these lengths strongly grow when the transition
to the crystalline phase is approached, thin strips exhibit or-
der already at temperatures above Tm. However, for a quan-
titative characterization of these lengths and their behavior
near the transition substantially longer calculations for sub-
stantially larger systems than were possible in the present
work would be required. The same statement applies to a
study of a model with p=3 rather than p=12, which would
correspond directly to the magnetic colloids used in many
experimental studies.

Thus the present work is a first step only, and extensions
in various directions are possible, including studies of dislo-
cation formation and structure of incommensurate layers
�Sec. V� near structured walls, and extensions to other crys-
talline structures. E.g., in binary colloidal systems also crys-
tals with square lattice symmetry were detected �76�, and a
study of wall effects in these systems also would be interest-
ing. Of course, also an extension to higher dimensionality
�thin films rather than thin strips� is a very relevant problem.
Surface instabilities, like the Raleigh instability in nanowires
�86�, which tend to break up a quasi-one-dimensional wire
into beads of smaller length, are known to be stabilized by
quantum effects. The instability discussed in this paper is
different, but it also appears to degrade the properties a
quasi-one-dimensional object by suppressing long range or-
der. What is the role of quantum corrections to the kind of
�bulk� instability discussed in this paper? We intend to report
on some of these problems in future work.
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